Matrix Number Game

Problem description

Shuaishuai often plays a matrix number game with his classmates: For a given $n \times m$ matrix, each element $a_{i,j}$ in the matrix is a non-negative integer. The game rules are as follows:

1. One element must be removed from each line each time, a total of n elements. It takes m times to remove all the elements of the matrix;

2. Each element to be removed must be at the beginning or end of the line where the element belongs.

3. Each removal has a score value, which is the sum of the scores of each line, and the score of each line = the value of the element to be taken $\times 2^{i}$, where i represents the ith removal (numbered from 1);

4. The total score at the end of the game is the sum of m times removal score value.

Shuaishuai would like to ask you to write a program that can find the maximum score for any matrix.

Input

The input file contains n+1 lines:

Line 1 contains two integers n and m separated by a space.

Line 2 to n+1 is an $n \times m$ matrix, where each line has m non-negative integers separated by spaces.

Output

The output file contains only one line, which includes an integer, that is, the maximum score for the input matrix.

Sample Input

23 123 342

Sample Output

82

Hint [Data Range]

For 60% of the data, $1 \le n$, $m \le 30$, the answer is no more than 10^{16} For 100% of the data, $1 \le n$, $m \le 80$, $0 \le a_{i,j} \le 1000$